Yu-Ping Laio¹, Po-Hsuan Su², Rui-Lan Huang³, Hui-Chen Wang¹, Yu-Chih Chen⁴, Hung-Cheng Lai¹,²,³*
¹ Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
² Translational epigenetics center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
³ Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
⁴ Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taiwan

INTRODUCTION

Epigenetic changes play an important role in cancer development. Our previous research on the epigenomics of cervical cancer using genome-wide approaches identified 14 candidate genes that were hypermethylated in cervical tumor tissues. Most of these genes are transcription factors and development-related genes that are common in the development of various cancers. Recent researchers demonstrated that gene mutations in cervical screenings can reflect the status of endometrial and ovarian cancer tissues.

AIM

We hypothesized that DNA methylation at cervical screenings could detect the presence of endometrial/ovarian cancers.

MATERIAL & METHODS

We tested the methylation status of these 14 genes in endometrial and ovarian tissue samples. Genes hypermethylated in cancer tissues were selected for further testing using cervical screenings from 19 endometrial or 27 ovarian cancer patients and 25 controls. The evaluation of the clinical performance characteristics of DNA methylation, including sensitive, specificity, positive predictive value, and negative predictive value were calculated.

RESULTS

POU4F3 revealed the clinical performance with sensitivity and specificity of 88% and 100% for detecting endometrial cancers, 63% and 100% for detecting ovarian cancers, respectively. The proof of concept has lead us to the analysis of epigenomics of endometrial cancer and ovarian cancer individually (Manuscript in preparation; patent pending). Those results shed a new light on the triple screening of gynecological cancers in the future.

REFERENCES

ACKNOWLEDGEMENTS

This work was supported by the National Health Research Institutes, Taiwan. The application of 14 gene methylation in cancer detection has been patented and licensed to CELLCALL LTD, Hungary.

Contact Information

Hung-Cheng Lai, MD, PhD
E-mail: hdc@tmu.edu.tw; hdc@tmu0656@gmail.com
Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University
No.251, Zhonghe Rd., Zhonghe District, New Taipei City, Taiwan
TEL: +886-2-2249028 ext 2972

SUMMARY / CONCLUSION

POU4F3 and MAGI2 genes showed hypermethylation in cervical swabs of endometrial (a) and ovarian (b) cancers. Ten samples of each group were tested.

Figure 1. The flow chart of verification. The methylation status of 14 genes were tested in endometrial and ovarian cancer tissues. Genes methylated in pooled DNA from cancer tissues were further tested in individual samples. Candidate genes derived from tissue results were tested in DNA from cervical swabs.

Figure 3. Four (PGD, HS3527, POU4F3, MAGI2) genes showed hypermethylation in cervical swabs of endometrial (a) and ovarian (b) cancers. Ten samples of each group were tested.

Figure 4. The performance of POU4F3 and MAGI2 hypermethylation in cervical swabs for the detection of endometrial (a) and ovarian (b) cancers.

Figure 2. The heat map showed the methylation status of 8 and 11 candidate genes in endometrial (a) and ovarian (b) tissues. There are 20 endometrial cancer tissues, 20 normal endometrium tissues, 20 ovarian cancer tissues, and 14 normal ovary tissues. The green and red color represents low and high methylation, respectively.

Figure 4. The performance of POU4F3 and MAGI2 hypermethylation in cervical swabs for the detection of endometrial (a) and ovarian (b) cancers.

Figure 3. Four (PGD, HS3527, POU4F3, MAGI2) genes showed hypermethylation in cervical swabs of endometrial (a) and ovarian (b) cancers. Ten samples of each group were tested.

Figure 4. The performance of POU4F3 and MAGI2 hypermethylation in cervical swabs for the detection of endometrial (a) and ovarian (b) cancers.